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Using the isothermal-isobaric ensemble, exact equations of state are derived for 
three classical models of one-dimensional chain fluids. Each chain molecule is 
modeled by a series of linked sites which interact through nearest-neighbor 
bond potentials. In two of the models, the intramolecular bonds are modeled by 
infinitely deep square-well potentials, while in the third, the bonds are modeled 
by a harmonic potential. Intermolecular interactions are modeled by a hard-rod 
potential. Numerical results are presented for dimer and 8-mer fluids which 
illustrate the influence of chain length, well width and spring constant on the 
compressibility factor. The effect of adding an infinitely weak, infinitely long- 
ranged attractive interaction between the sites is also considered. The attractive 
tail induces a first-order phase transition of the gas-liquid type in all of the 
chain models. For certain values of the model parameters, however, two of the 
models show evidence of a second gas-liquid type transition, which appears to 
be associated with chain collapse. 

KEY WORDS: Chain molecule; equation of state; one dimension; 
isothermal-isobaric ensemble. 

1. I N T R O D U C T I O N  

The statics and dynamics of one-dimensional (1D), classical fluids has been 
of continuing interest for nearly the past 100 yearsJ 1 18) Interest in these 
fluids stems, in part, from the fact that for many simple models the parti- 
tion function can be evaluated exactly.-Classical 1D fluids thus comprise 
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one of the few classes of systems where the techniques of statistical ther- 
modynamics can be fully exploited to determine the state functions of the 
fluid. Despite the obvious differences between 1D fluids and their higher- 
dimensional analogs, they share many of the same qualitative features, so 
that an understanding of the thermodynamics of 1D fluids can provide 
insight inito the behavior of their more realistic 3D counterparts. In addi- 
tion, approximations required in treating 2D and 3D problems can be 
tested and refined by comparing predictions in 1D to exact results. From 
a technological perspective, 1D fluids are also of interest due to their 
similarity to the nearly 1D geometries found in fine-pore silicas and zeolite 
catalysts such as mordenite. ~18'19) 

Rayleigh ~1~ first obtained the equation of state for a 1D fluid of hard 
rods; this result was later rederived by Tonks, ~2) following a different line 
of reasoning. Takahashi ~3) and Gfirsey ~4) considered 1D models with an 
arbitrary nearest-neighbor potential beyond the hard core and obtained 
exact results in the thermodynamic limit. The properties of these and more 
complex models have since been discussed by numerous authors ~5-18) (for 
reviews see refs. 5-8). The thermodynamics of 1D polyatomic fluids, 
though, does not appear to have received widespread attention. 

In this paper we examine the equations of state for three simple 
models of 1D chain fluids, focusing particularly on how intramolecular 
vibrations influence the equation of state. We consider a 1D fluid com- 
posed of N molecules, with each molecule containing n sites. All of the sites 
are constrained to lie along a single line of length L which is bound at 
either end by hard (but moveable) "walls." (See Fig, 1.) Sites are assumed 
to be impenetrable, so that one site cannot physically pass through 
another, and to interact only with their nearest neighbors. Interactions 
between adjacent sites along the same chain are governed by an 
intramolecular potential Uintra(X), while interactions between adjacent sites 
belonging to different chains are governed by an intermolecular potential 

U i n t e r ( X )  �9 

0 "-~ c~ "~-  L 

Fig. 1. Schematic illustration of a ID chain fluid. Each molecule is modeled by a series of 
n linked sites, represented by circles (here n = 3). All of the sites are constrained to lie along 
a line of length L, bound at either end by hard walls. Intramolecular bonds are denoted by 
zigzag lines. 
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For each of the three models, the intermolecular potential is taken to 
be that of a hard rod of length a, 

or, x/a < 1 
/~Uinter(X) = O, X/(7~1 (1)  

Here, x is the distance between the centers of the adjacent sites and 
f i= (kT)  ~, where k T  is the product of Boltzmann's constant and the 
temperature. A hard-core potential is also used to model the interaction 
between a wall and a neighboring site; the length of the hard core is chosen 
such that the edge of the site cannot penetrate the wall, 

Go, x /6  < 1/2 
fib/wall(X) = 0, X/O" >~ 1/2 (2) 

Where the three chain models differ is in their intramolecular bond 
potentials. For  model I, we take the bond potential to be an infinitely deep 
square well which confines adjacent sites to separations x, 1 ~< x/a  <<. 1 + 6 
(Fig. 2a), 

0% x/a  < 1 

flU~ntra(X ) = O, 1 ~ X/a ~ 1 Jr- 6 (3)  

or, x /o  > l + 6 

Here, 6 is a dimensionless parameter which controls the well width and the 
superscript I denotes model I. In model II, the location of the square well 
is shifted so that it is symmetrical about x = a, i.e. (Fig. 2b), 

i~ f oo, x /o  < 1 - 6/2 

fiUintra(X) = 10'  1 -- 6/2 <<. X/a <<. 1 + 6/2 (4) 
Go, x /o  > 1 + 6/2 

Finally, for model III the bond is modeled by a harmonic spring, with a 
force constant ~: and an equilibrium bond length a, along with an 
impenetrable hard core at x = 0 (Fig. 2c), 

III {00,  
flUintra(X)= ~(X/O- __ 1 )2, 

where c~ is the dimensionless force constant 

x/o  ~ 0 
(5) 

x/r > 0 

a = ----q-- (6) 
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The dimensionless force constant is a measure of the characteristic 
energy of the springs relative to the thermal energy of the sites. For 7 >> 1, 
the springs are stiff enough that they will rarely compress to the hard core 
at x = 0 ,  and the overall potential is relatively symmetric. For ~ r  1, 
however, the kinetic energy of the sites is large enough to easily compress 
the springs and the overall bond potential is markedly anharmonic. This 

b) 

c) 

[3Uintra 

1+6 
x/c~ 

~Uintra  

1- 8/2 1 +6/2 
�9 x / ~  

i 

1 

~Uintra 

a) 

x/c~ 

Fig. 2. Intramolecular  site-site potentials as a function of distance: (a) model  I, (b) model  II, 
(c) model III. 
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model is similar to that studied by Koppel (9~ and Northcote and Potts, (1~ 
in which every pair of adjacent sites interacted through Eq. (5). 

Each of the chain models considered here reduces to a rigid rod of 
length no- in the limit as either 3 ~ 0 or ~ -~ oo. The object of this paper is 
to explore the effect of finite & and c~ on the compressibility factor of the 
fluid and to see how the behavior of these three models differs from that 
of the rigid-rod fluid. 

The motivation behind the present study lies in the similarity of 
models I-III  to models used in molecular dynamics simulations of 3D 
chain fluids. Realistic 3D models of chain often allow for bond vibration, 
which may be modeled by a harmonic potential like that used in 
model III. (2~ For alkane chains, though, the force constants governing 
the vibrations are so large [~c ~ (_9(10 6 J/~ m o l e ) ]  (22) that the amplitude of 
the oscillations is quite small compared to o-. Similarly, the time scale of 
these vibrations is much smaller than the characteristic times required to 
observe thermodynamic or transport properties. As a result, in dynamical 
simulations much computer time is spent following the relatively unin- 
teresting bond vibrations. To increase computational efficiency, a common 
simplification is to fix the bond lengths at their equilibrium value, (23) as is 
done in the tangent, hard-sphere (or pearl-necklace) model. The 1D analog 
of this model is just the fluid of hard rods of length no-. The question 
remains, though, as to what extent the thermodynamic properties of the 
rigid and flexible chains wilt differ. 

Although fixing the bond lengths simplifies the form of 3D chain 
models, the imposition of rigid constraints complicates the dynamical 
description of the chains' motion. In order to solve the equations of motion 
for a system of interacting chains with constraints, one must work in 
generalized coordinates or introduce constraining forces which ensure that 
the bond lengths remain constant. (24'25) As a result, molecular dynamics 
simulations of hard-chain fluids become much more complicated and time 
consuming than similar simulations of hard-sphere fluids. 

To avoid the complications associated with fixed bond lengths, 
Rapaport (26'~7) and Chappela and co-workers (28'29) have introduced 
modified chain models in their molecular dynamics simulations, similar to 
models I and II. In these models, the bonds are allowed to rattle back and 
forth in an infinitely deep square well of width 6. By relaxing the constraint 
of fixed bond length, each of the n sites again becomes independent and the 
simulation becomes similar to the hard-sphere and square-well simulations 
pioneered by Alder and Wainwright. (3~ Using this approach, Rapaport 
examined the geometrical properties of isolated polymer chains (26) and of 
a polymer in solution. (2v~ In most of these studies, the chain model 
employed was the 3D analog of model I with 6 = 0.1. Extensive molecular 
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dynamics simulations of rattling, hard polyatomic fluids have also been 
performed by Chapella and co-workers. (28'29) In a series of papers they 
examine the equation of state, radial distribution function, and average 
bond lengths for several short-chain models as well as a variety of other 
polyatomic models. In these studies, the confining well was symmetrically 
located about the equilibrium bond length, as in model lI. (Unlike 
model II, however, the equilibrium bond length was less than the hard- 
sphere diameter 0..) A variety of well widths was employed, ranging from 
0.050- to 0.80.. 

A question of key interest in implementing these rattling-chain models 
is what value of the well width should be used and how it will influence the 
thermodynamic properties of the system. As noted by Rapaport, (26~ in 
choosing a suitable well width two competing effects must be considered. 
To compare with analytical and Monte Carlo results for fixed-bond 
models, ~ should be chosen as small as possible. However, the smaller the 
well width, the more computer time is spent following the intramolecular 
vibrations and the less time is available for monitoring the more important 
intermolecular collisions. Thus, the optimum value of fi represents a 
compromise between fidelity to the fixed-bond model and computational 
efficiency. However, there are no general guidelines as to what this value 
should be. 

Chapella and Martinez-Casas (29) have examined the influence of well 
width on the compressibility factor and radial distribution function of 3D 
hard dimers through molecular dynamics simulation. In their model, the 
center of the confining well was located at 0.40. and the width of the well 
varied between 0.050. and 0.80.. Results for the compressibility factor were 
compared to the predictions of  the equation of state developed by Tildesley 
and Streett (31) for rigid dimers. At low and moderate densities they found 
that the compressibility factor increased with increasing well width, while 
at high densities it decreased with increasing well width up to a width of 
0.60., after which it began to increase. They concluded that a well width of 
0.1r was a reasonable value to employ in polyatomic simulations. 
Bellemans e t  al. ~32) have examined an analogous 2D dimer fluid. In their 
study the well was centered at the hard-disk diameter (as in model II) and 
values of 6 =0.1 and 0.025 were considered. They found no significant 
differences between the thermodynamic and transport properties of these 
models and those of the rigid model. Moreover, the simulation with ~--0.1 
ran approximately three times faster than the rigid simulation, though this 
advantage was lost when 3 was decreased to 0.025. 

In order to gain a better understanding of the influence of intra- 
molecular vibrations on the thermodynamic properties of chain molecules, 
we consider here the equations of state for the simple 1D models described 
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above. We begin, in Section 2, by deriving a general expression for the 
equation of state of a 1D chain fluid, based on a straightforward 
generalization of Giirsey's derivation for monatomic systems. (4) In 
Section 3, the behaviors of the equations of state are illustrated through a 
series of plots for dimer and 8-mer fluids. Attention is focused on the effect 
of the well width 6 and the dimensionless force constant c~ on the com- 
pressibility factor (CF), and on how the CF of the flexible chains differs 
from the CF of the rigid chain at the same density. Finally, in Section 4, 
we briefly consider the qualitative effects of adding an infinitely weak and 
infinitely long-ranged attractive potential to models I III. 

2. T H E O R Y  

Consider a one-dimensional polyatomic fluid confined between hard 
"walls" located at x = 0 and x = L, as shown in Fig. 1. The fluid consists of 
N molecules, each containing n sites. Each site is indexed by the variable 
i, where i runs from 1 to Nn, and its position is given by xi. For  notational 
convenience, we denote the locations of the two walls by x 0 and XN~+I. 
Sites interact only with their nearest neighbors and are impenetrable, so 
that one site cannot pass through another. Rather than restrict the discus- 
sion at this stage to the pair potentials given in Section 1, we leave the 
forms of the various nearest-neighbor interactions unspecified, and denote 
them by u~i(x i -  xi_ 1), where v~ is either inter, intra, or wall, depending on 
the nature of the interactions between sites i and i -  1. 

Let the Boltzmann factor involving the generalized pair potential 
u~i(x) be denoted by 

f~(x, fl) = exp[ - f lu~(x)]  (7) 

The classical configurational integral can then be written as 

L, fl)= foLf~+~(L-- x~,.~, fl) dxN~ Z(N, 

x fvu, l(Xxn-- X~n 1, fl) dXun- 1 

i, X 2 

x ""Jo f t ( x l ,  fl) dx, (S) 

Equation (8) takes the form of an interated Laplace convolution. As a 
result, the Laplace transform of Z is equal to the product of the Laplace 
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transforms of each of the individual Boltzmann factors appearing in 
Eq. (8). (4'5'8'17) Defining the Laplace transforms of Z and fv, as 

Z(N, s, fl) = f o  e-sLZ(N' L, fi) dL (9) 

(10) 

we have 

LI(S, ~) =-- e-SXf~(x, fl) dx 

Nn+l 
2(N, s, fl)= [I L~(s, ~) (11) 

i=1 
Since there are a total of N - 1  intermolecular interactions, N ( n - 1 )  
intramolecular interactions, and two wall-site interactions, Eq. (11 ) may be 
written 

Z(N, s, fl)-- [-finter(S, fl)]N l[-Zntra(S, fl)]N(n--1)[-fwall(S, /~)]2 (12) 

In principle, 2 can be inverted by contour integration in the complex 
plane, allowing thermodynamic behavior to be obtained within the 
framework of the canonical ensemble. However, for most model potentials 
the inverse transform is extremely difficult to obtain except for small values 
of N and n, where the Bromwich integral can be explicitly evaluated, or in 
the limit N ~  0% where the method of steepest descent can be applied. As 
Northcotte and Potts (1~ point out though, the same macroscopic results 
can be obtained, with a great reduction in mathematical complexity, by 
recasting the problem in the isothermal-isobaric ensemble. In changing 
from a constant-L to constant-P ensemble, the length of the system is no 
longer fixed and will fluctuate about an average value <L} with the size of 
the fluctuations going to zero as N ~ oo. In effect, the two walls become 
movable and exert a constant compressive force P on the fluid. 

The isothermal-isobaric partition function Y(N, P, fl) is given by 
(ref. 8, pp. 164-179; refs. 33-36) 

2 
Y(N,P, f l ) = - ~  f ~ e ~eLZ(N,L, fl)dL (13) 

where P is the pressure, A is the thermal wavelength of the sites, and 2 is 
a parameter  with dimensions length -1 which serves to make the partition 
function dimensionlessfl [In one dimension the "pressure" (i.e., the thermo- 
dynamic conjugate of the length L) takes units of force.] 

5The precise value of the factor 2 appearing in Eq.(13) has been the subject of some 
controversy over the years (ref. 8, pp. 164-179; refs. 33-36). While this constitutes an impor- 
tant theoretical question, it is of little practical consequence for macroscopic systems, since 
as N ~  oo its contribution to the thermodynamic properties of the fluid is negligible. 
Following ref. 34, we take 2 to be a constant, such that 2 ~ O(A-1). 
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The integral appearing in the definition of Y is just the Laplace 
transform of Z, with P/~ functioning as the Laplace variable s. Thus, from 
Eqs. (12) and (13) we have the exact result 

Y(N, P, fl) = ~ Z(N, P~, fi) 

;t 
_ A Nn [ f i n t e r (P f l  ' f l ) ] N  l [ - f in t ra(Pf l ,  f l )]N(n 1)[fwall(Pfl ,  f l ) ] 2  

(14) 

It is interesting to note that the value of Y, and hence the thermodynamic 
behavior of the fluid, depends only on the total number of intermolecular 
and intramolecular interactions, and not on their specific order of 
occurrence in the system. 

The pressure-implicit equation of state for the generalized chain fluid 
is found from the thermodynamic identity 

(c~G) = _/~_1 (~3 !n Y'] (15) 

where Lth ~ < L )  is the thermodynamic length of the system. 
It is convenient at this point to introduce dimensionless variables: 

x * =  x/a, L * =  L/a, P * =  P~a, where a is the hard-rod length discussed in 
Section 1. Combining Eqs. (14) and (15), we may write the equation of 
state in the dimensionless form 

L* = - (N--  1 ) 0 In fi=tcr(P ,/~) 
~3P* 

In fintra(P , f l)  ~ In f 'all(P*,/3) 
--N(n-- 1) ~?p, 2 OP* (16) 

where f*=fv]a. This expression can be given a simple physical inter- 
pretation in terms of the average distances between neighboring sites. In 
particular, in the NPT ensemble it is straightforward to show that the 
average distance between the two sites, (tv*) -= (x*  - x* 1 ), is 

<lv*) OP* In f~(P*,/~) (17) 

Thus, Eq. (16) simply states that the total length of the system L* is equal 
to the average intermolecular distance times the number of intermolecular 

822/61/3-4-20 
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gaps ( N -  1), plus the average intramolecular distance times the number of 
intramolecular gaps [N(n -  1)], plus the average wall-site distance times 
the number of wall-site gaps (2): 

* N ( n  - 1)(li*tra) + 2(/w'all ) t8) L* = (N--  1)(linter ) + ( 

Turning to the evaluation of Eq. (16) for the three chain models 
described in Section 1, for the intermolecular and wall potentials one finds 
from Eqs. (1), (2), and (18) 

In f~*,o~(P*) 1 
* 1 (19) ( / in ter}= 0P* -- "q- "if'* 

~3 In -* * f~all(P ) 1 1 
�9 - -  (20) (/wall) -- 8P* 2 +P* 

Upon substituting Eqs. (19) and (20) into Eq. (18) and dividing by N, one 
obtains 

1 _ 1  1 1 
p , - -  + ~--~ + (n -- l)(/i*tra) + ~ (21) 

Here, p* is the dimensionless molecule density, p*= N/L*h. The term 1/N 
is negligible in the thermodynamic limit, and we drop it from subsequent 
analysis. Since l/p* is just the average distance per molecule, Eq. (21) 
states that (aside from the factor l/N) the average distance per molecule 
is equal to the average intermolecular distance [see Eq. (19)] plus the 
average bond length times the number of bonds per chain. This viewpoint 
will prove particularly helpful in interpreting the graphs presented in the 
next section. 

We focus now on the intramolecular potentials for the three chain 
models. For model I we have from Eqs. (3) and (18) 

In fintra 1 + ~ - -  coth ( - ~ )  + - -  I 8 - , I  6 6 1 
( l i n t r a )  = ~?p, ~ p* (22) 

Substituting Eq. (22) into Eq. (21) yields the equation of state for model I, 

p--g= l+~-g + ( n - l )  l + ~ - ~ c o t h  +~-g (23) 

The terms in the first set of brackets give the average intermolecular 
distance and the terms in the second set of brackets give the average 
intramolecular distance. 
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The individual terms appearing in Eq. (23) may be identified with 
intermolecular, intramolecular, and kinetic contributions to the equation of 
state. The value 1 appearing in the first term on the right-hand side arises 
from the hard core of the intermolecular potential, which prevent two sites 
from approaching closer than a distance a. Similarly, the value 1 appearing 
in the second set of brackets represents the hard core of the intramolecular 
potential. Taken together, they represent the minimum length to which the 
chain can be compressed, namely no-. The two terms involving 6 arise from 
the outer hard core of the intramolecular potential, while the I/P* terms 
represent the kinetic contributions from the n thermally activated sites. In 
the limit P* -* 0, all but one of these kinetic contributions cancel with the 
terms arising from the intramolecular potential, and one recovers the ideal 
gas law P * =  p*. 

For model II the average bond length is given by 

//~ii X__ 81nr*n 6 h { P * 6 )  1 aintr~ 1 -- ~ cot \ 2 ]  (24) \~,,tr~ 8p ,  + ~  

Combining Eq. (24) with Eq. (21) yields the equation of state for model II, 

1 _ [ 1  6 ( _ ~ )  1 )-g=l I I +  ~ ] + ( n  1) - ~ c o t h  +~-g] (25) 

where, again, the terms in brackets represent the average inter- and 
intramolecular distances. As before, the individual factors in Eq. (25) may 
be identified with kinetic, inner hard-core, and outer hard-wall contribu- 
tions to the equations of state. 

For model III, where the bonds are modeled by harmonic springs, we 
have [see Eq. (5)] 

0 In f ~ I I I  
~ J l n t r a  

(1~ I I I  
m t r a  Op* 

and the equation of state is 

P* 1 exp[-e(P*/2~-  1) 2] 
- -  - 1 --2-~ + x / ~  erfc[x/~ ( P * / 2 e -  1)] 

(26) 

p~=  1 + ~  + ( n - i )  1 - ~ s  (27) 

In the limit as either 6--*0 or e ~  o% Eqs. (23), (25), and (26) all 
reduce to the equation of state for a fluid of N rigid rods of length na, (l'z ~7) 

1 1 
- 1 + ~ u  (n-  1) (28) p* 
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As a result of the fixed bond lengths, the intramolecular contribution to 
Eq. (28) is simply ( n - l )  and, unlike the flexible models, contains no 
kinetic terms. The sole kinetic contribution, l/P*, arises from the single 
translational degree of freedom of the molecule as a whole. Equation (28) 
may be rearranged into the more familiar form 

P L )  1 1 
r i g i d  - -  (29) 1 - p * n  1 -  

where t/is the dimensionless site density, t /= p*n = Nna/L. 

3. D I S C U S S I O N  

To illustrate the behaviors of the equations of state derived in the 
previous section, we present a series of plots for dimer and 8-mer fluids 
(n = 2 and n = 8, respectively). Results are for macroscopic systems, where 
the factor 1/N in Eq. (21) is negligible. The plots focus on the behavior of 
the compressibility factor (CF -= PL/NkT= P*/p*) as a function of the site 
density t/. For rigid chains t/ varies between 0 (the ideal-gas limit) and 1 
(close packing); thus, t/ represents the packing fraction of the rigid-chain 
fluid. We begin with results for dimers, since they represent the simplest 
polyatomic fluid, with just one bond per molecule. The effect on the CF of 
increasing the chain length is then illustrated through comparisons with 
results for 8-mers. 

3.1. D i m e r  Fluids 

In Fig. 3, results are shown for model I dimers. The CF is plotted 
against the site density ~/for several different values of 6, ranging from 0 to 
2. The upper solid curve is the high-P*6 asymptote. The lower solid curve 
is the low-P*6 asymptote, which is just the CF of the rigid-chain fluid 
(6 = 0), Eq. (29). 

The deviations from rigid behavior are seen to increase both with 
density and well width. This may be attributed to the behavior of the 
average intramolecular bond length. Recall that the equation of state, 
Eq. (23), may be broken into two contributions, (/inter), denoted by the 
first term in brackets, and (/intra), denoted by the second term in brackets. 
For model I, the intramolecular term is always greater than 1, so that at 
any given density the flexible dimer will be longer than its rigid counter- 
part. As a result, the flexible dimer will experience more intermolecular 
collisions and its pressure will be higher. 
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Mathematically, the deviations from rigid behavior are controlled by 
the parameter P*6 in Eq. (23). This quantity is the ratio of the work 
required to compress the system a distance 6/2 (half a well width) to the 
average kinetic energy of a site. For P*6 ~ 1, the pressure is too low to 
noticeably compress the bonds, and they vibrate more or less freely 
between the inner and outer confining walls. In this limit, coth(P*5/2) 
l/P*6, and Eq. (23) reduces to 

1 ~ 1 +  (n 1) 1+ P*5 0 (30) p* p-~+ - -  , --+ 

The intramolecular contribution is the same as that which would be 
obtained if the bond length were fixed at the center of the well. Rearranging 
Eq. (30), one obtains 

NkTJ 1 - q [ 1  + ( n -  1)5/2]' P*6 --* 0 (31) 

10- Model I 
Dimers 

P L  

NkT 5 -I 

5 = 2 - -  

~-~ =.1 

5 = .2 

.5 

01 I 

0.0 0.5 1.0 

q 

Fig. 3. Compressibility factor vs. ~/for model I dimers. The upper solid curve is the high-P*6 
asymptote, Eq. (33); the lower solid curve is the rigid-chain equation of state (6 = 0), Eq. (29), 
which is the low-P*3 asymptote. 
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which can be compared with the rigid result, Eq. (29). Thus, at low 
densities, increasing 3 increases the effective packing of the fluid. 

At higher densities, the increased frequency of intermolecular collisions 
results in a compression of the bonds. As a dimer attempts to stretch, it 
becomes increasingly likely that it will collide with another molecule before 
reaching the outer wall of its confining well. As very high densities, then, 
it is as if the outer wall were not present at all, and the fluid behaves like 
a collection of N n  monomers, each of unit length. Mathematically, this 
occurs for P*3 >> 1, where the compressive pressure forces the dimers to 
collapse toward their hard cores. For P*3 >> 1, coth(P*3/2)~ 1, and the 
equation of state is approximately 

1 1 [ 1 1  p - - g ~ l + ~ + ( n - l )  l + ~ - g  , P * 3 ~  (32) 

Note that in this limit the inter- and intramolecular contributions are the 
same--namely, that of a rigid rod of length ~r. As a result, the pressure of 
the fluid is the same as the pressure of a fluid of N n  hard rods, 

P * =  t/ (33) 
l - r /  

The CF, however, is obtained by dividing both sides of Eq. (33) by the 
molecule density, p * =  q/n, 

P L  ~ P*3  ~ oe (34) /7 

N k T J  1 - ~l' 

so that the CF of the dimers is twice that of the rigid rods. Equation (34) 
corresponds to the upper solid curve in Fig. 3. 

The CF for model II dimers is plotted vs. t/ in Figs. 4a and 4b. 
Figure 4a shows results over the density range 0 ~< r/~< 1, which can be 
compared with the model I results in Fig. 3. For model II chains, however, 
it is possible to compress the system to densities t /> 1. Figure 4b shows 
results in this high-density regime, where the dimers have been forced to 
collapse. In each figure, the 
dimer fluid. 

In contrast to model I, 
rigid chains. As before, the 
are seen to increase with 6 
the differences observed for 
relative to the rigid dimer 

solid curve (3 = 0) denotes the CF of the rigid- 

the CF for model II is always less than that for 
differences between rigid and flexible behavior 
and t/, though they are generally smaller than 
model I. The reduction in the CF for model II 
is easily understood in terms of the average 
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intramolecular bond length of the flexible model. As Eq. (24) shows, 
( 1 . I I  \ ~,ntra/ ~ 1, SO that the model II dimers are always shorter than their rigid 
counterparts. As the density is increased, the flexible dimers contract in 
response to the increased stress in the system. The shorter lengths of the 
dimers results in fewer intermolecular collisions and a lower pressure. 

For  P'6/2 ,~ 1, the equation of state, Eq. (25), reduces to 

1 ~  l+ l+(n-1) ,  
p* P*6 ~ 0 (35) 

which is identical to that for rigid chains. Thus, unlike model I, at low 
pressures the model II fluid behaves like the rigid-chain fluid, regardless of 
the value of 6. 

At the other extreme, P'6/2 >> 1, the equation of state simplifies to 

[ 'J 1 l+~,+(n-1) 1-~+~-u , 
p* P*6 --* oo (36) 

In this limit, just as with model I, the outer wall of the bond potential no 
longer influences the vibrations, and the assembly behaves like a fluid of 
Nn hard monomers. However, because the inner wall of the potential is 
located at 1 - 6/2, the fluid behaves like a mixture of N hard monomers of 
length 1 and N(n - 1) hard monomers of length 1 - 6/2. Thus, the effect of 
increasing 6 is to lower the effective packing fraction. Rearranging Eq. (36), 
one obtains 

( PL )n n }, P*6 ~ oo (37) 
U - ~ /  1 -n{1  - [ ( n -  1)/n]6/2 

This behavior is characteristic of the curves shown in Fig. 4b for t /> !. 
The most complex behavior is exhibited by model III, where bonds are 

represented by harmonic springs combined with a hard core at x = 0 .  
Figures 5a and 5b show results for the CF for values of e ranging from 
0.0001 to 100. Figure 5a focuses on the t /< 1 regime, while Fig. 5b covers 
the expanded range 0 ~< t/~< 2. (Because the hard core is located at x = 0, it 
is possible to compress the system to a maximum density r/ma • = n.) Once 
again, the solid curve denotes the rigid-dimer CF. 

As Fig. 5a shows, model III exhibits both positive and negative 
deviations from rigid behavior (c~ ~ oo ), depending on the values of ~ and 
r/. As before, the key to interpreting these results lies in understanding the 
behavior of the intramolecular bond, which is more complicated than 
either of the two preceding models. Note that, although the spring 
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connecting adjacent sites is governed by a harmonic potential, superposi- 
tion of the hard core at x = 0 makes the overall potential anharmonic. 

The influence of the anharmonic potential on the CF is most easily 
seen by first considering its effect on (/~,III \lntra/ in the ideal-gas limit. Letting 
P* ~ 0 in Eq. (26) gives 

1 e x p ( - c  0 
lim /1 ~'m ", = 1 + - -  (38) \ "  m t r a  / 

e*-,0 x / -~  1 + erf(x/~) 

This equation describes how the presence of the hard core tends to skew 
the average bond length outward to distances greater than 1, depending on 
the value of c~. For  c~ >> 1, the kinetic energy of a site is much less than the 
energy needed to compress the spring a distance of cr (i.e., to the hard wall). 
Under these conditions, the bond vibrations are not noticeably affected by 
the hard wall and the bonds oscillate more or less symmetrically about a 
value ,.~'l*HI~,ntra / \ = 1. AS the density is increased, this model behaves similarly 
to model II, in which the bonds also vibrated symmetrically about x* = 1 
in the ideal limit. The qualitative effect of increasing the density, and, 
hence, the number of intermolecular collisions, is to slightly compress the 
springs. Since the vibrating dimer is now shorter, on average, than its rigid 
counterpart, its CF becomes smaller than the rigid CF, as seen in Fig. 5a. 

For  c~ ~ 1, on the other hand, the kinetic energy of the sites is more 
than enough to compress the springs a distance a. It is in this region that 
the anharmonic nature of the potential is most strongly manifested. The 
hard core prevents the springs from compressing a distance more than a, 
but it does nothing to prevent the springs from stretching to distances 
significantly greater than 2a. Thus, the average bond length shifts steadily 
outward as c~ is decreased, and as ~--* 0 we have \/l*IIIintra / \ ~ (~r~) --1/2. Under 
these circumstances, model III is qualitatively similar to model I, for which 
the average bond length is also greater than 1. At low densities the larger 
size of the dimer relative to the rigid model leads to more collisions and, 
hence, positive deviations from the rigid CF. As the density is increased, 
though, and the bonds are forced to compress, the deviations shift from 
being positive to being negative. 

A particularly interesting situation arises in the low-c~ limit, where the 
bonds are very weak and the dimers stretch to large separations. Naturally, 
at extremely low densities, where (/ intra) '~ (/inter), the fluid behaves like 
an ideal gas of N molecules. However, as the density is increased slightly 
and the inter- and intramolecular distances become comparable, the weak 
bond force becomes negligible compared to the impulsive forces incurred 
by the hard-core collisions. In other words, over distances that the dimer 
can stretch before colliding with another molecule, the bond force is so 
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small that it is as if the two sites were not bonded together at all. Under 
these conditions the system behaves like an ideal gas of 2N monomers, so 
that as t/is increased, the CF jumps from 1 to 2. This type of behavior is 
observed in the e = 0.0001 curve in Fig. 5a. 

Mathematically, the behavior of the equation of state is controlled by 
the parameter w = x / ~ ( P * ] 2 ~ - l )  appearing as the argument of the 
exponential and complementary error functions in Eq. (27). Though it is 
possible to derive a number of asymptotic forms for Eq. (27), we focus here 
on three simple limits to illustrate the qualitative points outlined above: (1) 
stiff springs at low pressures (x/~ ~> 1, P*/2c~ ~ 1, Iwl ~> 1); (2) weak springs 
at low pressures ( w / ~ l ,  P * / 2 c ~ l ,  ] w i l l ) ;  and (3) fluids at high 
pressures (P*/2e ~> 1, co ~> 1). 

Beginning with case 1, for , ~  ~> 1 and w large and negative, the factor 
e-W2/[s is negligible in comparison to the other terms in 
Eq. (27), and the equation of state reduces to 

p , )  P* •  1 p ,  + ~ - g + ( n - 1 )  1 , w ~ 0 ,  x/-s ~ - ~ 1  (39) 

The average intramolecular distance is decreased from 1 by P*/2c~, which 
is just the distance that the spring would be compressed when acted on by 
a steady force P*. The shift in bond length accounts for the slightly smaller 
CF relative to the rigid chain, as shown in Fig. 5a for c~ = 25 and e = 4. 

For case 2, the term e W2/erfc(w) in Eq. (27) can be expanded in a 
Taylor series about w = 0. Keeping terms of (9(c~ -1/2) or greater gives 

1 1 n -  1 P *  
p, p,t-(~e)l/~, w-*0 x f ~ l , - 2 - - ~ 1  (40) 

Thus, to leading order, the intramolecular distance is the same as that for 
an ideal, very weakly-bound dimer, and the fluid behaves like an ideal gas 
with a correction term that acts to increase the CF above 1. This equation 
applies to the e = 0.0001 and e--0.01 curves in Fig. 5a in regions where 
they first begin to deviate from ideal-gas behavior. Thus, at low pressures, 
the stiff-spring dimers (case 1) show negative deviations from rigid 
behavior, while the weak-spring dimers (case 2) show positive deviations. 

Finally, we consider a fluid under high pressure. In case 3, erfc(w) can 
be represented by the asymptotic expansion (3v) 

e w2 E •  
erfc(w) ~ ~ 1 -  (9(w , 

x/~ w 2w2 
w ~ oe (41) 
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Substituting this expression into Eq. (27) and requiring P* >> 2~, we obtain 

1 1 n -  1 P *  
p .  1 +~ -7+  p .  , w o% -~-~>>1 (42) 

and the fluid behaves like a mixture of N hard rods of unit length and 
N(n-1)  point sites that have momentum but no extension in space. 
Rearranging Eq. (42), we have 

PL ~III n P* 
- N - ~ J  1 - rl/n' w --* o% ~ -  >> 1 (43)  

Physically, the spring have been compressed to the point where the 
harmonic well of the potential has no influence on the vibrations. 
Effectively, the sites vibrate in a square well whose inner wall is at x = 0 
and whose outer wall is determined by the average distance to the next 
molecule. For  small c~, where the harmonic well is reasonably flat to begin 
with, this limit is reached at relatively low densities, and the effective 
square well is broad. The c~ = 0.0001 curve in Fig. 5a reaches this limit by 
7=0.1 ,  and one can see how the c~=0.01 and e=0 .25  curve begin to 
approach this behavior as t/ is increased to 1. For large c~, on the other 
hand, the limit is not reached until the bond has been almost completely 
compressed, i.e., t / - ,  n. Figure 5b shows how the e = 1, 4, 25, and 100 cur- 
ves shift from the rigid limit [Eq. (29)] to this compressed limit [Eq. (43)] 
as q increased from 1 to 2. 

Figures 6 and 7 illustrate how the pressure in models I and II varies 
with well width, holding the density fixed. In each graph the ratio of the 
pressure of the flexible dimer to the pressure of the rigid dimer is plotted 
vs. 6 for five different values of r/ ranging from 0.25 to 0.99. Since the 
density is fixed, this is also equal to the ratio of the CFs of the flexible and 
rigid fluids. Deviations of the ratio from a value of 1 reflect the extent to 
which the flexible-dimer fluid differs from the rigid-dimer fluid at a given 6 
and r/. To a first approximation, these figures might be useful in gauging 
how large a value of ~ could be employed in higher-dimensional simula- 
tions without incurring significant deviations from rigid behavior~ 

For  model I, increasing 6 from 0 leads to sizeable departures from 
rigid behavior, particularly at high densities. The upper value of 2 in Fig. 6 
corresponds to the large-P*6 limit, where the influence of the outer hard 
wall is lost and the fluid behaves like an assembly of 2N monomers 
[Eq. (32)]. Naturally, the higher the density, the more quickly this limit is 
reached as 6 is increased. 

For  model II (Fig. 7) the ratio of the two pressures is always less than 
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Fig. 6. Ratio of the pressure of model I dimers to the pressure of rigid dimers vs. the well 
width ~5. In each curve the site density r 1 is held fixed. 

1, since the flexible dimers are, on average, shorter than the rigid dimers. 
A comparison of Figs. 6 and 7 shows that, for a given 6 and t/, the model II 
dimers deviate less from rigid behavior than do the model I dimers. In par- 
ticular, it appears that for model II a value of 6 = 0.4 would yield accurate 
estimates for the rigid-dimer CF for densities up to q = 0.5. However, for 
model I even a value of ~ = 0.1 would lead to sizeable overestimates for the 
rigid CF except at very low densities. 

In simulations of 3D dimers, Chappela and Martinez-Casas (29) 
observed a quite different dependence of the pressure ratio on 6 than that 
shown in Fig. 7 for model II. In particular, at low densities they found that 
the ratio was greater than 1 and increased with 6, while at high densities 
the ratio was less than 1 and decreased with 6. (Their simulations 
employed a slightly different dimer model than model II, where the center 
of the confining well was located at x * =  0.4; however, one would expect 
their observations to be also valid for model II dimers.) This discrepancy 
highlights an important difference between the 1D models considered here 
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Fig. 7. Ratio of the pressure of model II dimers to the pressure of rigid dimers vs. the well 
width 6. In each curve the site density q is held fixed. 

and their higher-dimensional analogs. In 1D, the confining well is just a 
line segment bound by hard wall at x* = 1 - 6/2 and x* = 1 + 3/2. Since the 
two sites are free to vibrate back and forth between these limits, at low 
densities the average bond length is 1. In 3D, however, the confining well 
is formed by two concentric spheres--the inner one of radius r* = 1 - 3 / 2  
and the outer one of radius r * - 1  +6/21 The bond is free to vibrate 
anywhere within this spherical shell; however, since there is a larger volume 
of accessible space in the region r* > 1 than there is in the region r* < I, 
on average the bond is more likely to be found at extensions greater than 
1. This, in turn, expands the effective size of the dimer, leading to more 
intermolecular collisions at a given density and, hence, a higher pressure. 
Naturally, the larger 3, the more pronounced this effect is. Thus, at low 
densities the deviations from rigid behavior increase with 3. At higher 
densities, though, the bonds will begin to contract due to the increased 
number of intermolecular collisions, and the average bond length will 
eventually become less than 1. Under these conditions, increasing 6 allows 
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the bonds to contract even further, and the pressure ratio decreases with 6. 
These arguments also apply to models I and III, so that one would expect 
the deviations from rigid behavior for 3D model I dimers to be somewhat 
larger than those shown in Fig. 6. 

In Fig. 8 we plot the pressure ratio p,H~/p,R VS. ~, illustrating the 
effect of varying the force constant while holding the density fixed. As 
before, the shapes of these curves are a reflection of the influence of ~ on 
the average bond length. For sufficiently large values of a, where the dimer 
is nearly rigid, the pressure ratio tends to 1 regardless of the value of I?. At 
low densities, as e is decreased, the average bond length expands and the 
pressure ratio is greater than 1. Conversely, at high densities when ~ is 
decreased the average bond length contracts and the pressure ratio is less 
than 1. For sufficiently small e all the curves approach a flat plateau which 
corresponds to the asymptotic limit given by Eq. (43). 

The r/= 0.75 curve in Fig. 8 exhibits a particularly interesting and, at 
first, counterintuitive behavior. The entire curve lies below 1, implying that 
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Fig. 8. Ratio of the pressure of model III dimers to the pressure of rigid dimers vs. the 
dimensionless force constant c~. In each curve the site density t/is held fixed. The brace along 
the abscissa denotes an approximate range of e for real 3D diatomics at 298 K. 
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the springs are compressed for all e. However, as ~ is increased from 10 5, 
the pressure does not monotonically approach the pressure of the rigid 
fluid, but, rather, passes through a minimum. In other words, as the spring 
constant become larger, instead of the average bond length shifting steadily 
outward toward a value of 1, it actually becomes even smaller before finally 
extending to 1. Physically, this is a manifestation of the anharmonic nature 
of the bond potential. For c~ < 0.01, the flatness of the curve implies that the 
CF is approximately given by Eq. (43). In this regime, the force constant 
is too small too hinder noticeably the springs from completely compressing 
to x * = 0 .  At the same time, the density is high enough that when the 
bonds try to extend, they usually collide with another site before reaching 
an extension where the harmonic potential becomes significant. As a result, 
in this region the equation of state is nearly independent of e. Note, 
however, that although the bond average length is less than one, the force 
constant is small enough that occasionally the bonds will stretch to 
relatively large separations (i.e., 2 or more) before colliding with another 
molecule. Now, as ~ is increased from 0.01 to 1, the force constant is still 
too small to hinder noticeably spring compression; however, it will begin 
to restrict the occasional long stretches of the bond. Consequently, since 
inward compressions are not affected but outward extensions are 
decreased, the averaged bond length decreases, despite the fact that it is 
already less than one to begin with. Accordingly, the pressure of the system 
also decreases. As ~ is increased above i, however, the bond potential 
becomes more symmetric and the force constant is large enough to oppose 
both the inward and outward movement of the springs. Thus, for large c~ 
the stiffness of the springs forces \r m t r a /  \ to return to 1. Naturally, the 
higher the density and the more compressed the bonds, the larger e must 
be for this to occur. 

This argument also applies to the tt = 0.90 and t /= 0.99 curves, which 
also show a slight dip in the vicinity of ~ = 1. The higher the density, the 
smaller the dip is, since the dimers will usually suffer collisions with other 
molecules before stretching to the point where the bond force becomes 
important. Note that the tt--0.5 curve also shows a small dip. In this case, 
for c~ ~ 1 the average bond length is greater than one, but as ~ approaches 
1 and the outward vibrations are diminished, / l * m  \~ intra) shifts to a value less 
than 1. 

The brace along the abscissa of Fig. 8 delineates an approximate range 
of e for real diatomics (C12, Br2, I2, 02, N2, and CO), obtained by 
substituting realistic values for the force constant; (3s) ~c and equilibrium 
bond lengths ~ a into Eq. (6). At 298 K, e ranges from 1470 for I2 to 6010 
for N2. Over this range, Fig. 8 suggests that the rigid dimer (at least in 1D) 
is an excellent approximation to the more realistic vibrating dimer. 
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3.2. 8 -Mer  Fluids 

Having surveyed the basic trends exhibited by the three dimer fluids, 
we now illustrate the effects of varying the chain length. The chain length 
enters into the equation of state through the parameter (n - 1) multiplying 
the average bond length in Eq. (21). Thus, the longer the chain, the more 
influential the intramolecular contribution to the equation of state 
becomes. Results are shown in Figs. 9-14 and can be compared to their 
dimer counterparts, Figs. 3-8. 

In interpreting these figures, it is useful to first consider the rigid-chain 
fluid. At a fixed site density r/, both the pressure and the molecule density 
p decrease with increasing n. However, P* and p decrease at the same rate, 
so that their ratio, the CF, remains constant [see Eq. (29)]. 

The pressure of the three flexible models will generally not decrease at 
the same rate as p* as n is increased. This may be understood by consider- 
ing a dimer and an 8-mer fluid at the same site density r/. For  a particular 
value of r/, the dimer and 8-mer bonds will tend to compress from their 
ideal gas values to relieve some of the stress in the system. However, since 
the 8-met contains seven times as many bonds as the dimer, each 
individual bond needs to compress a smaller amount in order to relieve the 
same total amount of stress. In other words, for a given t / the 8-mer bonds 
will be closer to their ideal, unperturbed value than will the dimer bonds. 

Results for model I are shown in Fig. 9, where the CF is plotted 
against t/ for several values of 6. As in Fig. 3 the lower solid curve is the 
CF for the rigid model (6--=0) and the upper curve is the high-P*6 
asymptote, Eq. (34). A comparison of Fig. 3 to Fig. 9 shows that the 8-mer 
and dimer fluids display the same qualitative trends. However, for a given 
6 and t/, the 8-mer fluid deviates more from rigid behavior than does the 
dimer fluid. This follows directly from the argument above. At a given t/, 
the average bond length in the 8-mers is greater than the average bond 
length in the dimers, which, in turn, is greater than the bond length in the 
rigid chain. Consequently, as the chain length increases, model I becomes 
an increasingly poor  approximation for the rigid model. 

Results for model I1 are shown in Figs. 10a and 10b. Figure 10a covers 
the density range 0 ~< t/~< 1, while Fig. 10b covers the high-density regime 
where the 8-mers are collapsed and the CF becomes asymptotic to Eq. (36). 
In both figures the solid line is the rigid-chain CF. Unlike model I, the 
model II 8-mers deviate less from the rigid curve than do the model II 
dimers. Again this is a reflection of the average bond lengths of the two 
models. In the ideal limit, the model II dimers, model II 8-mers, and the 
rigid chains all have an average bond length of 1. At finite densities, 
though, the dimer bonds will compress more than the 8-met bonds, leading 

822/61/3-4-21 
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Fig. 9. Compressibility factor vs. t/for model I 8-mers. The upper solid curve is the high-P*fi 
asymptote, Eq. (33); the lower solid curve is the rigid-chain equation of state (~ = 0), Eq. (29), 
which is the low-P*~ asymptote. 

to larger deviations from rigid behavior. Thus, in contrast  to model  I, as 
the chain length is increased, model  II  becomes a progressively more  
accurate approximat ion  to the rigid chain. 

Model  I I I  results are shown in Figs. 1 la  and 1 lb. As before, the solid 
line represents the rigid equat ion of  state. For  small e and t/, where the 
average bond  lengths are greater than 1, the 8-mer deviations from rigid 
behavior  are larger than the dimer deviations (compare Figs. 5a and 1 la), 
as was the case for model  I. Conversely, for large e, where the bond  lengths 
are close to or  less than 1, the (negative) deviations from rigid behavior  are 
smaller for the 8-mers than they are for the dimers, as was the case for 
model  II. Note  that  as t/ increases from 0 to 0.1, the e = 0.0001 curve jumps  
from 1 to nearly 8 as the fluid goes from behaving like an ideal gas of  N 
chains to an ideal gas of 8N monomers .  Figure l lb  highlights the transition 
from rigidlike behavior  to the compressed behavior  of Eq. (43) for stiff 
chains. For  large e and t/>~ 3 the C F  vs. t/ curves exhibit loops, as seen in 
Fig. 1 lb  for ~ = 25 and c~ = 100 ( though the pressure remains monotonic ,  as 
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required for mechanical stability). The loops occur when P*/2c~ shifts from 
being less than 1 to being greater than 1, causing the argument of the com- 
plementary error function in Eq. (27) to change rapidly from being large 
and negative to being large and positive. [An analysis of Eq. (27) in this 
regime reveals that the local maximum occurs at t /= 2 regardless of the 
value of n or c~.] 

Figures 12 and 13 illustrate the effect of varying the well width on the 
pressure of models I and II. As in Figs. 6 and 7, the ratio of the pressure 
of the flexible models to the pressure of the rigid model is plotted as a 
function of 6 for several values of r/. The upper limit of 8 in Fig. 12 occtirs 
for P*6 >> 1, and is obtained by taking the ratio of Eq. (34) to Eq. (29). 
Notice that, for a given 6, the 8-met fluid approaches its asymptotic value 
of 8 more slowly than the dimer fluid approaches its asymptotic value 
of 2. Recall that this upper limit is obtained when the influence of the outer 
wall of the confining well is lost so that the fluid behaves like an assembly 
of Nn monomers. Since, for a given t/, the 8-mer bonds are less compressed 

8 I {  

/ 

! 
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Ratio of the pressure of model I 8-mers to the pressure of rigid 8-mers vs. the well 
width 6. In each curve the site density r/is held fixed. 
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Fig. 13. 
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Ratio of the pressure of model II 8-mers to the pressure of rigid 8-mers vs. the well 
width 6. In each curve the site density ~/is held fixed. 

than are the dimer bonds, they are more strongly influenced by the 
presence of the outer wall. 

A comparison of Figs. 7 and 13 shows that, for a given 3, the model II 
8-mers are more rigidlike than the model I I  dimers. This follows from the 
same arguments given above. At a given t / the  bonds in the 8-mers will be 
compressed less from their unperturbed value of 1 than will be the bonds 
in the dimers. As Fig. 13 shows, for t /<  0.5 excellent approximations for the 
rigid CF can be obtained using well widths as large as 6 = 0.6. 

In Fig. 14 the pressure ratio is plotted vs. c~ for model III  8-mers. As 
with the other two models, the differences between the 8-mer and dimer 
curves can be traced to the differences in their average bond lengths. At a 
given t / the  8-mer bonds will be less perturbed from their ideal values than 
will the dimer bonds. For e ,~ 1, where the unperturbed bond length is 
greater than 1, this increases the pressure ratio, just as for model I. Com- 
pare, for example, the t /=  0.75 curves in Figs. 8 and 14: In the dimer fluid 
the bonds are compressed to values less than 1, so that the pressure ratio 
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Fig. 14. Ratio of the pressure of model III 8-mers to the pressure of rigid 8-mers vs. the 
dimensionless force constant ~, In each curve the site density q is held fixed. The brace denotes 
an approximate range of c~ for real 3D alkane chains for 76 < T< 745 K. 

is less than 1; in the 8-mer fluid the bonds  are also compressed, but, on  
average, are greater than 1, so that  the pressure ratio is greater than one. 
The opposite effect is seen for c~> 1. Under  these conditions the 
unper turbed bond  lengths are close to 1 and the bond  potential  is nearly 
symmetric about  this average value, just as for model  II. As a result, the 
8-mers compress less than the dimers, and the deviations from rigid 
behavior  are smaller. 

The brace along the abscissa of Fig. 14 denotes a representative range 
of e values for alkane chains. In evaluating ~ from Eq. (6), we used a spring 
constant  ~c = 9.25 x 106 j /~2  mole, an equilibrium bond  length ~ = 1.53 ~, 
and a temperature range 76 < T <  745 K, which correspond to the values 
employed by Weber  (2~ in molecular  dynamics simulations of n-butane and 
n-octane. Over  this range it appears, for 1D fluids at least, that  the pearl- 
necklace model  is an excellent approximat ion  to the more  sophisticated 
vibrating-chain models. 
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In introducing Figs. 6 and 7 it was suggested that the results might 
serve as qualitative benchmarks for estimating the influence of g or 
on the CF of 2D and 3D chain fluids. However, there are several key 
differences between 1D fluids and their higher-dimensional analogs which 
should be borne in mind. One concerns the influence of dimensionality on 
(lintra), as discussed in conjunction with Fig. 7. For 2D and 3D chains the 
average, unperturbed, bond length will not be midway between the two 
walls of the confining well, but will be shifted outward. As a result, the 
higher-dimensional chains will be swelled relative to their 1D analogs and 
their pressure ratios will be larger than those shown in Figs. 6-8 and 12-14. 
In principle, this effect could be eliminated in models II and III by shifting 
the confining well so that the midpoint of the well was located at a distance 
less than 1, but the average unperturbed bond length was equal to 1. 

A second difference between 1D and higher-dimensional fluids has to 
do with the nature of the intermolecular collisions and their influence on 
the average bond lengths. In 1D each collision is "head-on" in the sense 
that the collisional force acts directly to compress the bonds in the two 
colliding chains. In higher dimensions, though, most collisions will take 
place at oblique angles, so that only a fraction of the total collisional force 
will be directed along the bond vector. Thus, is seem reasonable to expect 
that, at a given packing fraction, the head-on 1D collisions will tend to 
compress the bonds more than the glancing 2D and 3D collisions. 

Finally, it is important to note that there are no long-range 
intramolecular interactions in any of the models studied here. This 
simplification was necessary to evaluate the partition function. As a result, 
it is possible to compress model III chains to the point where all of the sites 
on the same chain are overlapping. Similarly, for 6 = 2 it is possible to 
compress the model II chains to the point where all of the sites overlap. Of 
course, intramolecular excluded-volume forces prevent this from happening 
in real fluids. Thus, the collapsed, high-r/ regions shown in Figs. 4b, 5b, 
10b, and l lb ,  while of conceptual interest, do not have an obvious 3D 
analog--the sites interact normally with their intermolecular neighbors, 
but, aside from the nearest-neighbor bond potentials, are invisible to other 
sites on the same chain. At high densities one could imagine the chains in 
such a 3D fluid collapsing into rigid balls, just as the chains in the 1D fluid 
collapse into rigid rods. 

4. INFLUENCE OF A WEAK,  ATTRACTIVE  TAIL 

In this section we briefly consider the effects of adding an infinitely 
weak and infinitely long-ranged attractive potential to the three chain 
models. The weak tail is of interest because it can be treated exactly and 
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because it can induce a first-order phase transition in the system, 
qualitatively similar to the gas-liquid transition observed in real fluids. ~5'14) 
(Unlike their higher-dimensional counterparts, 1D fluids with finite-range 
attractions do not exhibit phase changes. ~15)) Thus, the 1D fluid with a 
weak, long-ranged tail is one of the simplest, exactly-solvable models 
exhibiting behavior qualitatively similar to real fluids. What  is interesting 
to note for the 1D chain fluids is that, under certain conditions, the 
inclusion of a long-ranged, attractive tail may lead to two first-order phase 
transitions of the gas-liquid type (i.e., with a critical point). We focus here 
on the qualitative influence of the attractive tail, leaving a detailed analysis 
of the phase diagram for future study. 

We consider chain fluids which, in addition to the potentials described 
in Section 1, interact through an attractive, Kac-Baker  pair potential (5'12' 13) 
Uatt(X), 

Uatt(X ) = -aTe-~ Ixl (44) 

where a and 7 are positive constants with 7-1 characterizing the range of 
the attractive interaction. For a given chain model (I, II, or III) ,  Uatt acts 
in addition to the pair potentials defining that model; the original model, 
without attractions, we refer to as the reference fluid. Unlike the reference 
potentials, however, uatt is not limited to just nearest neighbors, but is 
assumed to act between a / /pa i rs  of sites in the system. 

In the thermodynamic limit, Kac (12) proved that no phase transition 
occurs for finite values of ~. However, Baker, (13) Kac eta/., (14) and 
Lebowitz and Penrose (4~ have shown that a first-order, gas-liquid-type 
phase transition is possible if one takes the limit N--* oo followed by 7 ~ 0, 
so than ~/att becomes infinitely weak and infinitely long ranged. For  1D 
fluids interacting through site-site potentials, they found that the equation 
of state takes the generalized van der Waals form 6 

P*(r/, ,8)< M.C. i-P*er(r/, ,B)+ 1/2a'r/2 ] (45) 

where Pr*ef is the dimensionless pressure of the reference fluid, a* = a~fl, and 
M.C. denotes the well-known Maxwell construction, (41) which serves to 
replace the unphysical loops in the P vs. p isotherms with horizontal lines 
connecting the two coexisting densities. 

6 This result is most easily deduced following the heuristic arguments of Lieb and Mattis. In 
their approach, the free energy density of the full system is expressed as the sum of the free 
energy density of the reference system plus a van der Waals correction for the influence of 
the Kac potential. Differentiation with respect to volume then leads to Eq. (45). See ref. 5, 
p. 12. 
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Hall and Stell (42) have shown that a qualitative picture of the phase 
diagram, along with the locations of the critical and spinodal points of the 
full system, can be obtained from graphical constructions involving only 
reference-fluid properties. Following their approach, we consider plots of 
(OP*e/&/)~ vs. r/ for the three chain models. The locations of the critical 
points are determined by the equations 

OP*'] = 0  (46] 

( (~2p, ~ = 0  (47) &#2 ),~ 

Substituting Eq. (45) into these expressions, we have 

~ef~ = (48) a*. 

( 02P**f) = a* (49) ~2 )~ 

The spinodal points, which denote the limits of stability of the phases, are 
located at the maxima and minima of the van der Waals loops. Hence, they 
are given by Eq. (48) without the additional constraint of Eq. (49). 

The usefulness of the (~P*er/&1)n vs. ~/ plots ties in the simple graphical 
interpretation than can be given to Eqs. (48) and (49). The solution of 
Eq. (48) is given by the intersection of the (6qPr*ef/C3r/)/~ curve with the 
straight line through the origin of slope a*. Similarly, a graphical inter- 
pretation of Eq. (49) shows that the critical point is located at the point 
where the (c~P*cf/&/) a curve becomes tangent to a straight line through the 
origin of slope a*. 

The use of these graphical constructions is illustrated in Fig. 15. The 
solid curve represents (~P*f/&/)~ for model I 8-mers with 6=0.  2. The 
dashed line of slope a* is constructed so that it is tangent to the ((~P*ef/(~t/)fl 
curve. The point of intersection locates the critical point of the system. 
For lines with slopes a* >a*  there will be two intersections with the 
(0P*/?t/)nvs. t/ curve. These intersections locate the spinodal points and 
indicate that a first-order phase transition is present. Since the coexistence 
densities bracket the spinodal points, the location of the spinodal points 
gives a qualitative picture of the phase diagram. For a*<  a* there are no 
intersections and the fluid is homogeneous at all densities. 

As expected, the inclusion of a weak, long-ranged tail leads to a first- 
order transition in each of the models. What is interesting to note, though, 
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is that for some models the graphical constructions suggest the possibility 
of two first-order phase transitions, each with a distinct critical point. 
The appearance of the second transition is illustrated in Fig. 16, where 
(~P*/3tl)~ is plotted vs. r / for  model II 8-mers with 6 = 0.2, 1.0, 1.5, and 2. 
Each of these fluids exhibits a critical point at low density. However, the 
6 = 1.5 and 6 = 2, curves also possess a second point of tangency at higher 
density. Thus, over a certain range of a* there will be four intersections 
with the (oPref/~fl)~ curve, suggesting the possibility of two first-order 
transitions. 

0P*ref] 

1 

Model I1 
8-mers 
~=0,2 

j J  

0 ~ ~ Clitieal Pt. 

0.0 0.4 0.8 

q 

Fig. 15. Illustration of the graphical constructions used to examine the qualitative phase 
behavior of chain systems with weak, long-range attractions. The solid curve is (~P*ef/~?t/)~ VS. 
q for model II dimers with & = 0.2. The dashed straight line passing through the origin with 
slope a c is constructed so that it is tangent to the solid curve. The critical point is located at 
the point of tangency, which represents the simultaneous solution of Eqs. (48) and (49). For 
lines with slopes a > a  c there will be two intersections with the solid curve, locating the 
spinodal points of the system and indicating that a first-order phase transition is present. For 
lines with slopes a < a c the curves do not intersect and no phase change occurs. 
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It is interesting to note that in Fig. 16 the lower-density critical points 
occur at approximately the same density for all five curves. Similarly, for 
a given a* the lowest-density spinodal point occurs at roughly the same 
density for each system. This suggests that the first "gas-liquid" transition 
in the flexible-chain fluids is qualitatively similar to the transition in the 
rigid-chain fluid (6 = 0). The second phase transition (if present) occurs at 
densities t /> 1, which are, of course, physically inaccessible to the rigid 
fluid. It seems likely that this second transition is associated with the 
collapse of the flexible chains into relatively compact rods. Evidently, 
though, this collapse only results in a phase transition when the well width 
(and hence, the extent to which the chains can collapse) is relatively large. 

Figure 17 shows a series of similar curves for model III 8-mers. Every 
curve except c~ = oe displays the possibility of a second transition. (The 
location of the second critical point is off the scale for the c~ = 25 and 

( (~P*ref / 
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Fig. 16. Possible existence of a second-phase transition. (~3P*f/grl) ~ vs. q for model II 8-mers 
with 6 = 0.2, 1, 1.5, and 2. Using the straight-line construction described in Fig. 15, each of the 
curves is seen to have a low-density critical point. However, for the 6 = 1.5 and 6 = 2 curves 
it is possible to construct a second straight line that is tangent to the curve at a higher density, 
suggesting the possibility of a second critical point for these fluids. 
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Fig. 17. Possible existence of a second phase transition. (OP*er/O~l),~ vs. q for model III 
8-mers. Using the straight-line construction described in Fig. 15, each of these systems except 

= oo shows the possibility of containing two critical points. (The second point of tangency 
for the c< = 25 and c< = 100 curves is off the scale of the plot.) 

c~ = 100 curves, and is on the rapidly rising section at low densities for the 
e=0.001 and c<=0.01 curves.) For  values of c~ on the order of 1 or more, 
the two transitions are qualitatively similar to those discussed in Fig. 16. 
The low-density critical points are all located at roughly the same density, 
and it appears that the transition is similar to that exhibited by the rigid- 
chain fluid (e = oo). The second transition occurs for q > 1 and can again 
be attributed to the collapse of the chains into hard rods. 

For  small values of e, the phase transitions are qualitatively different. 
The low-density transition occurs only for a narrow range of values of a* 
that are much larger than the a* required when a >  1. The second 
transition again appears to be associated with chain collapse, although the 
lower density spinodal point can be located at t /<  1. 

It is important  to emphasize that, while the presence of two points of 
tangency is suggestive of a second phase transition, it is not conclusive. In 
order to establish the second transition, one must perform a Maxwell 
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construction on the P* vs. L* isotherm. (41) While the construction can 
confirm the existence of two transitions, it is also possible that the second 
transition will be "swallowed up" by the first. (42) Under these conditions 
only a single phase change occurs, with the coexistence points bracketing 
the lowest- and highest-density spinodal points. Of the models examined in 
this paper, the possibility of two phase transitions was observed for 
model II 8-mers with 3 = 1.5 and 2.0; model III dimers with e -- 4, 10, and 
100; and model III 8-mers for all values of e. All other models showed only 
a single transition. 

5. C O N C L U S I O N  

In molecular dynamics simulations of 3D chains it is often advan- 
tageous to allow for internal flexibility in the bonds connecting adjacent 
sites. Key questions that then arise are how will interval vibrations 
influence thermodynamic behavior and to what extent will the CF differ 
from that of the conceptually simpler, pearl-necklace model? Our objective 
in this paper has been address these issues for three simple 1D chain 
models, chosen because of their similarity to the models often employed in 
3D simulations. 

Using the isothermal-isobaric ensemble, exact equations of state were 
derived for each chain model. These equations could be given a simple 
physical interpretation in terms of the average distances between neigh- 
boring sites. By focusing on the behavior of the intramolecular bond length 
as a function of density, well width, and chain length, the trends displayed 
by the equations of state could be qualitatively explained. At a fixed 
density, model I shows positive deviations from the rigid CF, while 
modellI shows negative deviations. Model III shows both positive and 
negative deviations, depending on the value of e. For stiff springs (c~ ,> 1), 
the CF is less than the rigid CF. For weak springs (e ~ 1), the CF is larger 
than the rigid CF at low densities, and smaller than the rigid CF at high 
densities, where the bonds begin to collapse. 

Of the two square-well models considered here, model II most closely 
mimics the behavior of the rigid chain. In particular, a value of ~ = 0.1, as 
suggested by Chappela and Martinez-Casas (29) and by Bellemans eta/., (32) 

gives an excellent approximation to the rigid-chain CF at all but the 
highest densities (t/> 0.9). Furthermore, at lower densities, Figs. 7 and 13 
suggest that significantly larger values of 6 could be employed in simula- 
tions with negligible error. Although larger values of 6 will tend to increase 
the unperturbed, average bond length in 2D and 3D, this effect could be 
eliminated by shifting the center of the confining well inward. 

Turning to model III, for realistic values of the dimensionless spring 
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constant  (e ~> 100) the CFs  of the vibrating and rigid chains are nearly 
identical at all but  the highest densities. Overall, then, it appears that the 
vibrating chain can be accurately modeled by the pearl-necklace chain, 
which, for purposes of  computa t ional  efficiency, can be accurately 
represented by the rattling, model  II  chain. 

Finally, we briefly considered the qualitative effects of  adding an 
infinitely weak and infinitely long-ranged attractive potential to models 
I - I I I .  Inclusion of  the weak, attractive tails leads to a generalized van der 
Waals  equat ion of state and induces a first-order phase transition of  the 
gas-l iquid type in all the chain models. Using simple graphical construc- 
tions requiring only reference-fluid properties, the locations of the critical 
points and spinodal  points were determined and qualitative pictures of the 
phase diagrams were obtained. Surprisingly, some of  the models showed 
evidence of a second disorder~disorder transition, which appears to be 
associated with chain collapse. These preliminary results are more  
suggestive than conclusive, though,  since a Maxwell construct ion must  be 
made to establish the existence of  the second transition. 
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